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Abstract Dedicated energy crops and crop residues will meet
herbaceous feedstock demands for the new bioeconomy in the
Central and Eastern USA. Perennial warm-season grasses and
corn stover are well-suited to the eastern half of the USA and
provide opportunities for expanding agricultural operations in
the region. A suite of warm-season grasses and associated
management practices have been developed by researchers
from the Agricultural Research Service of the US Department
of Agriculture (USDA) and collaborators associated with
USDARegional Biomass Research Centers. Second generation
biofuel feedstocks provide an opportunity to increase the pro-
duction of transportation fuels from recently fixed plant carbon
rather than from fossil fuels. Although there is no “one-size-fits-

all” bioenergy feedstock, crop residues like corn (Zea mays L.)
stover are the most readily available bioenergy feedstocks.
However, on marginally productive cropland, perennial
grasses provide a feedstock supply while enhancing eco-
system services. Twenty-five years of research has dem-
onstrated that perennial grasses like switchgrass (Panicum
virgatum L.) are profitable and environmentally sustain-
able on marginally productive cropland in the western
Corn Belt and Southeastern USA.
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Introduction

Second generation biofuel feedstocks provide an opportunity
to increase the production of transportation fuels from recently
fixed plant carbon rather than from fossil fuels. There is no
“one-size-fits-all” bioenergy feedstock, but crop residues, her-
baceous perennial feedstocks, and sugar crops are logical
choices for the Corn Belt and much of the Southeastern
USA. Crop residues like corn (Zea mays L.) stover are the
most readily available bioenergy feedstocks due to their abun-
dance, availability, and producer familiarity. However, on
marginally productive cropland, perennial grasses may pro-
vide a reliable feedstock supply while providing enhanced
ecosystem services. Mitchell et al. [1] focused on four primary
advantages that perennial feedstocks have over annual crops
such as corn. First, perennials have less annual establishment
input requirements. Second, they require fewer herbicide and
fertilizer inputs than corn. Third, perennials produce large
quantities of biomass with limited inputs. Fourth, perennial
crops have the potential to provide multiple ecosystem ser-
vices like reduced nutrient runoff, reduced erosion, soil carbon
sequestration, and wildlife habitat. However, perennial
grasses must be profitable, acceptable, and environmentally
sustainable to farmers, biorefineries, and society before
large-scale adoption of this biomass source becomes a reality.

This paper presents a scientific review of the benefits and
challenges of harvesting crop residues and growing dedicated
energy crops in the Corn Belt and Southeastern USA. We
recognize that feedstock production within an agroecoregion
must have a limited impact on the primary production of ag-
ricultural crops while providing adequate and reliable feed-
stock supplies on an already intensively utilized agricultural
landscape. Consequently, providing feedstock options that op-
timize sustainable yield not only drives the economic feasibil-
ity of the feedstock, but also the capacity of the landscape to
meet agricultural and societal demands [2].

The Regional Biomass Research Centers (RBRCs) were
established in 2010 to condense and optimize existing
USDA research efforts on bioenergy. Five RBRCs organize
USDA Agricultural Research Service (ARS) and Forest
Service (FS) bioenergy research to promote collaboration
and reduce repetition among researchers in all aspects of the
bioenergy-production continuum. The Central-East RBRC fo-
cuses on the development of perennial grasses and biomass
sorghum (Sorghum spp.), along with corn stover management
for lignocellulosic biomass. Integrating perennial grass feed-
stocks into current agricultural systems may help reduce nu-
trient escape from fields to surface and ground waters, reduce
greenhouse gas emissions, reduce erosion, and increase soil
carbon sequestration. The Southeastern RBRC focuses on the
development of superior performing herbaceous feedstocks
like energycane (Saccharum spp.), biomass sorghum
(Sorghum spp.), and other subtropical/tropical perennial

grasses like napier grass [Cenchrus purpureus (Schumach.)
Morrone]. Plant breeders from these regions have identified
herbaceous species and specific genetic traits that could be
useful for dedicated biomass crop development. Advances in
biomass crop breeding and genetics are covered in an accom-
panying review (Anderson et al., this issue). There is also a
need to identify the best strategies to incorporate dedicated
biomass crops into existing annual row crop, pasture, agrofor-
estry, and forest-based systems.

Recent Advancements

A recent report estimated that in 2013, bio-based products
added $369 billion to the US economy, employed four million
workers, and displaced about 1.1 billion liters of petroleum
[3]. Previously, the US Billion-Ton Update [4] provided an
estimate of a national inventory of primary bioenergy feed-
stocks. The report relied upon a large body of research con-
ducted by the USDA-ARS and FS as well as from many
universities working on biomass resources. This information
was used to estimate biomass production capabilities by re-
gions and allocated land-use changes based on net returns
using the Policy Analysis System (POLYSYS), to select po-
tential biomass crops that could grow under specified climac-
tic conditions, and to identify a starting point for development
of best management practices [4].

Candidate Feedstocks

Numerous feedstocks have been considered for bioenergy,
ranging from crop residues to dedicated energy crops.
Because yield is the most important characteristic for
biomass feedstocks, only a limited number of candidate
feedstocks will comprise a majority of the available
land. The primary herbaceous feedstocks for the
Central-East and Southeastern RBRC are corn stover,
switchgrass (Panicum virgatum L.), polycultures of na-
tive prairie species, miscanthus (Miscanthus species, pri-
marily giant miscanthus [M. x giganteus Greef et
Deu.]), sugarcane and energycane, napier grass, and sor-
ghums. These species likely will dominate most land-
scapes in the new bioeconomy. Not surprisingly, a ma-
jority of the candidate herbaceous feedstocks are warm-
season (C4) grasses, primarily due to higher water use
efficiency (WUE) and nitrogen use efficiency (NUE)
compared to C3 grasses. However, these warm-season
species have varying adaptability in the USA. The plant
adaptation region map, constructed by overlapping an
ecoregional map with the US plant hardiness zone
map, shows a great deal of complexity in determining
what particular feedstock produces best at which loca-
tion [5]. Biomass crops ideally will be produced on
marginally productive cropland that is not well suited
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to commercial food, feed, or fiber production. Marginally pro-
ductive landmay include shallow soils, soils subject to seasonal
flooding, anthropogenically engineered soils, small fields, non-
irrigated land in irrigated regions, contaminated soils, or urban
alcoves. The highest potential for producing biomass on mar-
ginally productive lands will come from the Midwest and
Southeast USA due to high net primary productivity and avail-
able water [6]. A brief description of candidate feedstocks
follows.

Corn Stover and Other Crop Residues

Arable land in the Midwest supports the majority of US corn
and soybean (Glycine max L.) production. In the US Corn
Belt, corn stover availability and expected low feedstock costs
make it a likely source for cellulosic biofuel. For example,
three commercial-scale cellulosic ethanol plants in Iowa and
Kansas are being commissioned in 2015 that will use corn
stover as the primary feedstock. Corn stover protects arable
land against soil and water and wind erosion, nutrient loss, and
is a source of soil organic carbon (SOC). Determining harvest-
able amounts of corn stover without causing negative impacts
on the soil resource and subsequent yields has been a primary
research objective for agronomists and soil scientists. Corn
stover research conducted by the USDA ARS Renewable
Energy Assessment Project (REAP; now known as the
Resilient Economic Agricultural Practices) in conjunction
with the US Department of Energy Sun Grant Regional
Feedstock Partnership has made significant advancements
by collecting and summarizing 239 site-years of data on 36
research sites utilizing standardized data collection protocols
[7]. The REAP objectives were (i) to determine crop residue
amounts needed to protect the soil resource, (ii) compare
short- and long-term tradeoffs for use of crop biomass as a
bioenergy feedstock versus a soil carbon source, and (iii) to
provide recommendations and guidelines for sustainable bio-
mass harvests to producers, industry, and government entities.
This information provides a guideline for enabling the USA to
reach bioenergy and bioproduct production goals from corn
stover while sustaining soil health for future use. Outcomes
from REAP research have led to stover management guide-
lines based on minimum grain yield requirements, maximum
stover removal rates, stover harvest frequency, crop rotation,
tillage practices, and landscape position. Future research will
monitor long-term stover management on soil fertility and
quality, development of sub-field management practices to
optimize stover removal while minimizing environmental im-
pacts, refinements in producer decision support tools, and
evaluating amelioration practices (e.g.,. cover crops, manure,
biochar) with residue removal.

Crop residue from other grains such as wheat (Triticum
aestivum L.), rice (Oryza sativa L.), oat (Avena sativa L.),
and sorghum (Sorghum bicolor L.) are available inmany areas

of the USA but would be much less abundant than corn stover
[4]. In Louisiana, up to 24 Mg ha−1 of post-harvest sugarcane
(Saccharum officinarum L.) residue is deposited in the field.
However, leaf material from growing plants shows that about
$100 ha−1 of N, P, and K are removed if residue is removed
with the cane crop (P. White, this paper, unpublished data).

Perennial Herbaceous Crops

Perennial grasses like switchgrass, big bluestem (Andropogon
gerardii Vitman), and indiangrass (Sorghastrum nutans (L.)
Nash) are being developed as alternatives to annual row crops
used for bioenergy feedstock production. Perennial energy
crop placement on marginally productive or marginally prof-
itable cropland could improve ecosystem services while pro-
viding a more diverse farm enterprise system. Switchgrass,
big bluestem, and indiangrass are the dominant grass species
in tallgrass prairies and are key components in warm-season
pastures and conservation programs. During the early 20th
century, significant pasture and hayland areas were required
for grazing animals to maintain draft power for rural farms and
urban transportation. The transition from draft power to the
internal combustion engine in US agriculture contributed to
the decline in land dedicated to perennial systems. Significant
land areas in the Corn Belt have been identified that are mar-
ginally productive for annual crop production, but have excel-
lent potential for growing switchgrass and other perennial
grasses [8]. Newly developed switchgrass, big bluestem, and
indiangrass cultivars have been released for increased cell wall
quality and biomass yields as a result of advances in agronom-
ic research which evaluate these species in monoculture and in
mixtures for bioenergy production [9]. The Central-East
RBRC, in partnership with the USDA National Institute for
Food and Agriculture-funded CenUSA Bioenergy program,
has evaluated the use of switchgrass, big bluestem, and
indiangrass for producing perennial energy crops in an envi-
ronmentally sustainable manner. Recent findings include (i)
identifying that sufficient land exists in the US Corn Belt to
support a cellulosic ethanol industry using both corn stover
and switchgrass without impacting productive cropland [10],
(ii) the potential of perennial bioenergy crops to sequester soil
carbon [11], (iii) release of a bioenergy-specific switchgrass
cultivar [12], (iv) documenting that switchgrass ethanol yield
potential is similar to corn grain and stover ethanol potential
on marginally productive cropland [13], and (v) documenting
that existing field-scale and watershed-scale model refine-
ments to address spatial and temporal environmental impacts
on cropland conversion to perennial energy crops [9, 14].
Further advancements in genomic selection and concurrent
cost reductions likely will allow for accelerated rates of genet-
ic gain (i.e., increased biomass production, increased winter
hardiness) in perennial grasses [9].
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Switchgrass and native polycultures are well adapted to
marginally productive cropland. Switchgrass has been identi-
fied as the model herbaceous perennial feedstock because it is
broadly adapted and has high yield potential onmarginal crop-
lands [15]. An assessment of 10 managed farms produced
switchgrass yields between 5.2 and 11.1 Mg ha−1 sustainably
on marginal cropland in the upper Midwest with 94 % lower
greenhouse gas emissions compared to gasoline [16].
Switchgrass has high biomass yields in most production
systems receiving at least 600 mm of annual precipitation,
east of the 100th Meridian, or anywhere rainfed corn can
be grown reliably [17]. Although switchgrass and other
native polycultures tolerate low fertility soils, optimizing
biomass and maintaining quality stands requires nitrogen
(N) fertilizer inputs and proper harvest management [17].
Low input native polycultures have been evaluated in a
limited number of sites and species mixes and are expect-
ed to reduce life-cycle greenhouse gas emissions and re-
quired inputs [18]. These low input native polycultures
often have severely limited yields. However, with in-
creased inputs, production can sometimes be comparable
to native monocultures. Both systems lack multi-location
comparative evaluations against other high-yielding pe-
rennial monocultures [17].

Giant miscanthus has been evaluated as a bioenergy feed-
stock in Europe and the Eastern USA and has shown high-
biomass yield potential with minimal fertilizer requirements.
Giant miscanthus biomass production has been highest in
Illinois (>30 Mg ha−1 year−1), with lower yield potential in
the South and Southeastern regions (2.5 to 17Mg ha−1 year−1)
[19–21]. Giant miscanthus is established by planting rhizomes
5–10 cm deep into a prepared seed bed at 14,000 to 17,000
rhizomes ha−1 in 76-cm rows [22]. Harvestable yields are
typical at 18–20 months after planting.

In the USA, sugarcane is grown in the subtropical Gulf
Coast Region of Southern Florida, Louisiana, Texas, and
Hawaii and is used almost exclusively for sugar. Ethanol pro-
duction from sugarcane is limited by the short viability period
of extracted juice for conversion and the limited harvest period
in the continental USA of November to February. Alternative
feedstocks are needed from March through October to
extend the period of operation. A combination of sweet
sorghum which is harvested from July to October [23] and
sugar beet (Beta vulgaris L.) could meet the demand for
supplemental soluble sugars. Sugar beet has a broad area
of adaption and has shown promise as a winter crop in the
South [24]. Sugar beet cultivars have been tested in the
Southern USA as a winter crop that can be harvested in
the spring months after sugarcane harvest and before
sweet sorghum. Yields were higher when beets were
planted in September and October (69–118 Mg ha−1) ver-
sus those planted in November and December (42–
69 Mg ha−1) [25]. Growing non-traditional sugar crops

provides opportunities for producing a readily fermentable
substrate to extend the sugar production period in the
southern US.

Energycane is sugarcane bred and produced solely for the
purpose of using the biomass as a fuel [26]. Energycane
(Saccharum spp.) is derived from parent commercial sugar-
cane lines and wild sugarcane (Saccharum spontaneum L).
Energy cane is typically lower in sugar content than commer-
cial sugarcane cultivars but with increased cold tolerance that
enables a wider growing region in the Southeastern USA [27].
Production practices are similar for sugarcane and energy
cane, which would allow energy cane producers to use
existing sugarcane infrastructure. A commercially re-
leased energy cane, “Ho 02-113”, produced dry matter
yields greater than 29 Mg ha−1 when sampled from
August to March in 2011 and 2012 in Houma, Louisiana
(P. White, this paper, unpublished data). Ho 02–113 pro-
duced >20 Mg ha−1 of DM (fiber + brix) in two field
harvested trials in Winnsboro, Louisiana in 2013 and
2014, with very low inputs of fertilizer or herbicides (P.
White, this paper, unpublished data). The energy cane site
at Winnsboro was defined as marginally productive for
the area due to a shallow plow pan and low available
nutrients. The broad harvest interval for energy cane is attribut-
ed to cold tolerance genes derived from wild sugarcane.
Concomitant with increased cold tolerance is an increase in
fiber content which contributes to a reduction in insect suscep-
tibility. Breeding efforts with Saccharum andMiscanthus have
shown greater cold tolerance in Saccharum x Miscanthus prog-
eny than in current sugarcane lines, with possible northern ex-
pansion for bioenergy [28].

Napier grass, a high-yielding tropical bunchgrass, is a via-
ble perennial feedstock for the Southeastern USA [29]. Napier
grass harvest strategies would be similar to other perennial
grass systems implementing a one harvest per growing season
approach to maximize biomass yield and minimize nutrient
removal [29]. Both napier grass and energy cane produce
more stalks per unit area than sugarcane, contributing to
higher biomass in subtropical regions [27, 29]. Results
from Georgia [30, 31] and Florida [19] field trials show
that napier grass and energy cane yields were significantly
higher than switchgrass, giant miscanthus, and giant reed
(Arundo donax L). However, moisture and ash content of
napier grass and energy cane could pose a problem for
conversion facilities [31].

Annual Crops

Some sorghum (Sorghum bicolor (L.) Moench) cultivars can
be key dedicated energy crops based on drought tolerance,
high N use efficiency, and high yield potential. Sorghum is
grown as an annual in the USA, making it a flexible choice for
producers in existing crop rotations. Sorghum is classified into
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three general categories: grain, sweet, and forage. All three are
being evaluated and developed as first or second generation
bioenergy feedstocks. Grain sorghum is converted to ethanol
in existing first generation ethanol plants. Sweet sorghum pri-
marily would produce sugar accumulated in the stalk and the
remaining biomass used for power generation or cellulosic
biofuel. Fermentable sugars and juice in sweet sorghumwould
be pressed and fermented similar to sugarcane. Forage sor-
ghum would be grown for cellulosic biomass. Breeding high
yielding grain sorghum lines with the brown midrib gene
(bmr) mutation has led to high fiber digestibility and low
lignin residue that could be used for biofuel production or
livestock feed [32]. Three brown midrib mutants (bmr-6;
bmr-12; bmr-18) with reduced lignin have been evaluated
and shown to improve ethanol yield in forage sorghum from
wild-type lines [33]. These genetic advancements would be
significant in water limited regions, particularly in areas where
there is livestock demand for highly digestible forages, and
first generation ethanol plants accept sorghum grain. Tamang
et al. [34] reported an optimum N rate of 108 kg ha−1 for two
photoperiod sensitive and two sweet cultivars in the Texas
Southern High Plains. Haankuku et al. [35] reported an opti-
mal N rate of 100 kg ha−1 in Oklahoma with no supplemental
irrigation, but there was no yield response during drought.
Rocateli et al. [36] compared yield of three sorghum types
(grain, forage, and photoperiod sensitive) to corn on dry land
and irrigated sites in conventional and conservation tillage
systems. Biomass was 38 % lower across sorghum types in
the dry year compared to the wet year. Conservation tillage
increased biomass by 11 % during the dry year, but no differ-
ence was observed between tillage systems for the wet year
[36]. In the Southeast, sweet and photoperiod sensitive sor-
ghums have been examined as potential energy crops due to
high biomass production, low N requirements, and drought
tolerance relative to corn [34, 36–38]. Sweet sorghum has
additional benefits of a typically shorter growing season and
production of fermentable sugars, although biomass produc-
tion is reduced compared to photoperiod sensitive sorghum
[34, 38]. In addition to the bmr gene, low amylose or waxy
endosperm genes and sweet genes are being incorporated and
evaluated in current breeding programs that would improve
sorghum as a bioenergy feedstock [39].

Agronomics of Perennial Grass Feedstocks

The goal of perennial grass feedstock planting is to establish
the feedstock as rapidly, completely, and inexpensively as
possible [17]. There is substantial cost to establishing peren-
nial biomass feedstocks, and the economic viability of the
feedstock is impacted by the success of stand establishment
in the seeding year, with stand failure costing farmers more
than $300 ha−1 [40]. Perennial grass establishment is limited
primarily byweed control, weather, and seed quality. For most

perennial grass feedstocks, improved establishment tech-
niques including improved minimum till grass drills, optimal
seedbed preparation, seeding depth, planting date, and regis-
tered herbicides for weed control have resulted in reliable and
rapid establishment [17, 41, 42].Mitchell and Vogel [43] over-
came seed quality issues by developing a seed lot establish-
ment test which based switchgrass seeding rates on emerged
seedlings per gram of seed with an associated stress test to
reduce risk of seeding failure (Fig. 1).

Regionally specific establishment and management guide-
lines have been developed for most candidate feedstocks [42,
44]. For example, establishment and management practices
for switchgrass have been validated at the field scale in mul-
tiple environments [16, 45]. A major issue with switchgrass
and other perennial grasses is slow establishment [8]. Mitchell
et al. [17] evaluated selected herbicides on stand establishment
and subsequent yields of adapted upland switchgrass cultivars
in Nebraska, South Dakota, and North Dakota as well as low-
land ecotypes in Nebraska. Applying quinclorac (3,7-
Dichloroquinolinedichloro-8-carboxylicquinolinecarboxylic
acid) plus atrazine (1-Chloro-32-chloro-4-ethylamino-56-
isopropylamino-2,4,6 s-triazine) resulted in acceptable stands
and high yields for all locations and ecotypes. With good
management including the use of herbicides, switchgrass can
produce yields equivalent to half of full production during the
establishment year and can be at full production the year after
planting. Unlike switchgrass and other native grasses which
are planted as seed, some perennial grasses are established
vegetatively. Giant miscanthus is generally established by rhi-
zomes. Napier grass and energy cane are established similar to
sugarcane by planting “seed cane” or mature cane stalks hor-
izontally in rows. For energy cane and sugarcane, the lower
nodes of the cane stalks emerge first into whole plants. If the
lower nodes are freeze killed, the lower nodules can germinate

Fig. 1 The establishment environment is very harsh for perennial
grasses. Improved cultivars and management practices have increased
the rate of establishment for perennial grasses, such as these
switchgrass seedlings about 10 weeks after planting
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and replace them. For both napier grass and energy cane,
spring survivability was maximized by planting seed cane
at least 90 days prior to the first freeze, which is normally
by mid-September in southern Georgia [46]. Sufficient
weed control was obtained by pendimethalin (3,4-
dimethylDimethyl-2,6-dinitro-N-pentan-3-ylanilineyl-ani-
line) and atrazine for improved height and yield of napier
grass [47].

Proper fertility and harvest management are critical to
maintain quality stands of most perennial grasses. Although
perennial grasses like big bluestem and switchgrass will sur-
vive on low fertility soils, the addition of N is needed to opti-
mize biomass [48]. Management strategies have been devel-
oped from decades of work with switchgrass [8]. In a recent
field-scale evaluation of switchgrass on marginally productive
sites in New York, Oklahoma, South Dakota, Virginia, and
Iowa using locally adapted cultivars had variable results, only
6 of 19 production environments responding positively to N
[49]. In a 10-year study in eastern Nebraska, switchgrass fields
receiving no N fertilizer and harvested at anthesis had low
biomass and were invaded by C3 grasses and big bluestem
and switchgrass stands declined [48]. In fields fertilized with
56 kg N ha−1 and harvested once annually after frost, switch-
grass stands were excellent, and invading species were limit-
ed. Nitrogen rate can be reduced when harvest occurs after a
killing frost because switchgrass cycles some N back to roots
during autumn [50]. The optimum N fertilizer rate for switch-
grass varies by region, but about 10 kg N ha−1 is needed for
eachmegagrams per hectare of expected biomass [48, 51]. For
giant miscanthus, the optimum N fertilizer rate is slightly less
than that for switchgrass [44]. Fertilizer requirements for
switchgrass and giant miscanthus are less than other annual
crops due to translocation of nutrients during senescence [52].
However, in Georgia, switchgrass, napier grass, and energy
cane yield declined rapidly after the third year with no fertil-
izer applications [31]. Fertilizer rates of 100 kg N ha−1 and
90 kg ha−1 potassium (K) were insufficient to replace nutrients
removed in harvested napier grass, but fertilized yields were
significantly higher than non-fertilized treatments [53]. Using
regionally available, alternative sources of nutrients like broil-
er litter can reduce feedstock production costs. Poultry litter
and proportional inorganic N fertilizer resulted in similar bio-
mass yields and N and K removal rates, but more phosphorus
(P) was extracted by napier grass from soil amended with
poultry litter, suggesting that it could be used to remediate
high P soils.

Studies throughout the Great Plains, Midwest, and South
generally support a single harvest after senescence to promote
sustainable and productive perennial feedstock stands [44, 54,
55]. A database of switchgrass studies from 39 field sites in 17
states supports a single harvest for bioenergy [56]. Harvesting
after frost allows N and other nutrients to be mobilized into
roots for storage during winter and use for new growth the

following spring [50]. Harvesting biomass after frost is bene-
ficial for thermochemical conversion and biopower because
antagonistic plant nutrients like N and calcium (Ca) are min-
imized in the biomass [54]. Leaving switchgrass biomass
standing in the field over winter and harvesting the following
spring leaches nutrients, maintains gasification energy yield,
and provides wildlife habitat, but reduces yield by 20 to 40 %
compared with harvesting in autumn after frost [57]. For en-
ergy cane, delaying harvest into the late winter months of
February and March resulted in changes to biomass moisture,
fiber composition, and N, but K decreased [58]. Fiber yield
was similar across sample dates but brix dropped rapidly from
December into later months. Early harvests are recommended
for sugarcanes and type I energy canes (lower sucrose content
and higher fiber than sugarcane) energy canes to avoid the loss
of fermentable sugars, but type II energy canes (marginal sug-
ar content and higher fiber content than sugarcane or type I
energy cane) can be harvested later during the winter months
with little change in conversion properties.

Field collection of biomass bales after harvest is a signifi-
cant expense. Bales often need to be aggregated at the edge of
the field prior to shipping to processing facilities. Cannayen
et al. [59] reported that bale loader capacity, field area, and
number of bales handled affected efficiency, but that field
shape, swath width, biomass yield, and randomness of bale
layout did not affect aggregation logistics. They reported a
self-loading bale picker was most efficient, and savings on
cumulative distances that directly influence time, fuel, and
cost were realized when the number of bales handled was
increased, or additional equipment was utilized.

Biomass processing is an important step in the conversion
of perennial grasses and corn stover into next generation
biofuels. Although perennial grasses and corn stalks have
many similarities, small differences in mechanical properties
of these crops may have a significant impact on bioprocessing
efficiency. Shear stresses were not different for big bluestem,
corn stalk, and intermediate wheatgrass [Thinopyrum
intermedium (Host) Barkworth and D.R. Dewey] but were
36 to 53 % less than switchgrass [60]. Corn stalk had the
greatest tensile stress followed by switchgrass, big bluestem,
and intermediate wheatgrass. Herbaceous feedstocks will re-
quire additional consideration when designing energy effi-
cient size-reduction systems.

Quantifying feedstock quality is important regardless of the
feedstock or conversion platform. Vogel and Jung [61] report-
ed agronomists, breeders, geneticists, and biorefineries would
benefit from a rapid, inexpensive, and accurate method for
predicting biofuel conversion. Vogel et al. [62] developed a
technique for estimating over 20 components for simultaneous
saccharification and fermentation (SSF) that met those criteria
using near-infrared reflectance spectroscopy (NIRS). In addi-
tion to the primary components of cell wall and soluble sugars,
an additional 13 complex feedstock traits can be determined
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including theoretical and actual ethanol yields from hexose
fermentation. Using a multi-year switchgrass cultivar evalua-
tion trial, they identified differences among switchgrass
strains for all biomass conversion and composition traits based
on cell wall and non-cell wall composition. Sarath et al. [63]
reported higher ethanol yields were associated with a decrease
in lignification of the cortical sclerenchyma. The NIRS Forage
and Feed Testing Consortium has transferred these calibration
sets and associated standard samples to multiple laboratories.
The calibrations are being refined to provide better predictions
as well as being expanded to thermochemical processes and is
being used to facilitate research to evaluate and develop other
perennial grasses into bioenergy crops [9].

Corn Stover Removal

Future demand for corn stover as livestock feed or as biofuel
has increased the importance of determining stover removal
effects on biomass production, nutrient dynamics, and the soil
resource. Partial stover removal can ameliorate potential yield
reductions, especially in high production no-till systems,
where high stover accumulation can interfere with planting
operations, stand establishment, and increase disease inci-
dence [64]. Corn stover removal trials located across the
Central and Eastern USA have evaluated corn grain yield
trends under various stover removal rates and management
practices [7]. In general, corn grain yields were similar or
slightly higher when partial stover removal occurs compared
with no stover removal [7, 64–67]. A 3 % average corn grain
yield increase was found with stover harvest compared with
no stover harvest at REAP stover removal sites. Longitude,
latitude, yield level, and previous crop effects accounted for
little variation on corn yield [7]. Irrigated corn grain yields
were 8 to 9 % higher for no-till when corn stover was removed
compared with no residue removal, while grain yields were
similar under tillage in all stover removal treatments [67].
Stover removal rates for these studies ranged from 2.5 to
12.4 Mg ha−1.

Stover preserves soil health by adding carbon to the soil.
Stover also contains a high proportion of nutrients which may
be expensive to replace and are essential for soil health.
Johnson et al. [68] determined that corn cobs contain a greater
proportion of carbon than stalks and leaves, and that stover
from the cob to the top of the plant has higher feedstock
quality. Mourtzinis et al. [69] showed that harvesting the
above-ear corn plant fraction, while leaving the remaining
stover in the field for soil erosion protection and soil organic
matter maintenance, is a potential option for corn stover har-
vest in the Southeast. Other research concluded that harvest-
ing the upper half of standing stover with cobs produced the
highest quality feedstock and maintained soil productivity as
determined by the soil management assessment framework
(SMAF) [70, 71]. Total precipitation and average air

temperature during the growing season were strongly corre-
lated with stover chemical composition, and the above ear
portion of stover was more desirable due to lower lignin and
higher cellulose content [72]. However, stover should not be
removed if grain yield is less than 11 Mg ha−1 [73]. Nutrient
(N, P, and K) removal is proportional to stover removal, and
nutrient removal on per unit area is highest for K, followed by
N and P [7]. In the short-term, soil N immobilization is ex-
pected to be lower with stover removal resulting in lower N
fertilizer requirements for the following corn crop. The eco-
nomically optimal N rate was >12 kg N ha−1 less with stover
removal compared with no stover removal under conservation
tillage [74]. Stover removal tends to increase early growing
season soil temperature resulting in increased crop develop-
ment rates [66, 74] but also can lead to increased evaporation
rates especially under drought conditions resulting in de-
creased yields [11, 64]. Ongoing, long-term REAP sites are
being monitored for grain yield and soil fertility changes from
nutrient removal under continuous stover harvests.

Current stover collection technologies are capable of recov-
ering up to 70 % of the stover, but determining stover collec-
tion thresholds to maintain SOC and minimize erosion will
differ by soil types, baseline SOC levels, cropping systems,
tillage practices, and field topography [64, 75]. Stover reten-
tion levels to maintain SOC are higher than retention levels
needed to control water or wind erosion [76]. On an irrigated
clay loam soil in Colorado, corn yields were higher for partial
stover removal than no stover removal but SOC stocks de-
clined in the 0 to 30 cm soil depth while no residue removal
showed an increase in SOC stocks over time [66]. Soil prop-
erty response to stover removal is most sensitive to near-
surface soil layers [64, 77] but SOC cycling processes below
near-surface soil layers can play a role in cumulative SOC
storage [11, 67, 78]. Based on REAP stover removal sites,
estimated minimum stover retention rates of 6.4±2.2 Mg sto-
ver ha−1 year−1 are required to maintain SOC, but residue
retention rates should be considered site and management
specific [79]. Reduced particulate organic matter stocks, an
early indicator of management effects impacts, have been re-
ported on stover removal sites [80] even when SOC stocks
have increased over time [64]. A universal, stover harvest
amount recommendation is not possible since management,
landscape, and soil type influences stover retention require-
ments at the field level. Based on current research, partial
stover removal may occur when grain yields exceed
11 Mg ha−1, conservation tillage is practiced, and on land-
scapes with minimal potential for wind or water erosion.
Amelioration practices (e.g., manure, cover crops) may still
be required to maintain SOC stocks depending on region and
soil type. The frequency of stover removal will also impact
how much stover can be sustainably removed within a grow-
ing season. The potential to couple sustainable agricultural
residue harvests with dedicated energy crops would improve
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land-use efficiency and limit biomass constraints for cellulosic
biofuel. A multi-feedstock, landscape approach also mini-
mizes economic and environmental risks in meeting feedstock
demands for cellulosic ethanol production by providing suffi-
cient feedstock availability while maintaining or improving
ecosystem services [67].

System Sustainability and Climate Change Mitigation
Potential

Among the primary system, indicators for sustainability and
climate change mitigation potential are changes in SOC and
direct emissions of greenhouse gases (GHGs) from the soil
surface. The GHGs most commonly associated with agro-
nomic activities are carbon dioxide (CO2), methane (CH4),
and nitrous oxide (N2O). Although agricultural CO2 fluxes
can be large, arable soils are not considered major sources of
atmospheric CO2. Net changes in system CO2, or net ecosys-
tem exchange (NEE), can be evaluated in the near-term using
micrometeorological approaches or inferred over the long-
term by takingmeasurements of soil carbon changes over time
[81]. In particular, building soil organic matter and long-term
SOC sequestration are key strategies to both mitigate rising
atmospheric CO2 concentrations as well as improve soil qual-
ity and soil health. Soils in non-flooded row crop and peren-
nial grass production systems are not important CH4 sources
so are not discussed here. In contrast, soil N2O emissions
resulting from soil and fertility management practices com-
prise 92 % of N2O emissions from the agricultural sector
and 69 % of national N2O emissions annually, representing
the largest anthropogenic N2O source in the USA [82].
Because the global warming potential of N2O is nearly 300
times greater than CO2, whether a system is mitigating or
exacerbating atmospheric GHG levels depends on the balance
between SOC storage and soil N2O emissions. As demand
grows for a reliable and environmentally responsible supply
of bio-based feedstocks, how management is adapted to meet
these demands will determine the sustainability and climate
change mitigation potential of bioenergy production systems.

Both direct measurement and modeling approaches have
been utilized to quantify and/or predict near- and long-term
SOC changes and soil GHG emissions from bioenergy pro-
duction systems under an array of conventional and conserva-
tion management practices across the USA. Through the
Energy Independence and Security Act [83], the US
Environmental Protection Agency (USEPA) designated the
reduction of total system GHG emissions determined by life
cycle assessment (LCA) as a major criterion for accepting
viable biomass sources for renewable energy. Soil N manage-
ment and upstream emissions from N fertilizer production
together contribute 46 to 68 % of total GHG emissions from
biofuel feedstock production systems [84]. Soil N2O emis-
sions usually are estimated instead of measured and input into

LCAs as a constant fraction (i.e., emissions factor, EF) of
commercial fertilizer rate (EF=1 %; [85]. While multi-site,
multi-year field measurements of soil N2O emissions show
substantial variability in EF at the site level, regionally aggre-
gated results are consistent with the 1 % assumption [86].
Recent model simulations further predict that alternative N
management practices (i.e., decreasing N rate, reducing appli-
cation of nitrification inhibitors) could enhance GHG mitiga-
tion potential of biofuel production systems [87]. Most LCA
studies do not account for SOC changes despite increasing
recognition that including SOC changes in LCAs are neces-
sary to accurately estimate system GHG emissions. When
SOC changes are incorporated in LCAs for bioenergy produc-
tion systems, total systemGHG emissions have been shown to
differ by 154 % depending on whether near-surface (<30 cm)
or sub-surface (>30 cm) SOC changes are used [78].

In the Northeast USA, a switchgrass production system
was a net sink of 0.39 Mg C ha−1 year−1 averaged over the
first 4 years of the stand [88]. In the Central USA, SOC se-
questration in switchgrass production systems occurred in a 5-
year on-farm study of 10 sites across Nebraska, South Dakota,
and North Dakota [45, 89]. In eastern Nebraska, both switch-
grass and corn biomass production systems sequestered SOC
after nine continuous years in both annual and perennial bio-
fuel systems. Under best management practices in either sys-
tem, soil C increased by 2 Mg C ha−1 year−1 [11] with near-
term net GHG reductions of −29 to −398 g of CO2 MJ
ethanol−1 year−1 [90]. Soil carbon storage also has been
measured under switchgrass in the Southeast USA, with
sequestration rates ranging from 0.17 to 1.7 Mg C
ha−1 year−1 [91, 92].

Growing season soil CO2 and CH4 emissions from switch-
grass in the Northern Great Plains are not impacted by fertil-
izer N rates [93, 94], but higher N inputs can increase yield as
well as soil N2O emissions [93]. In contrast, correlations be-
tween N rate and soil N2O emissions were obscured by annual
variability in weather and soils in a multi-year evaluation of
corn stover removal across nine sites in Iowa, Indiana,
Minnesota, Nebraska, and South Dakota. When results were
aggregated regionally, stover removal decreased soil GHG
emissions due to reductions in C and N inputs into soils as
well as possible microclimatic differences associated with
changes in soil cover [86]. Soil N2O emissions modeled by
the Daily Century model (DAYCENT) for a subset of these
sites were similar tomeasured rates whenN2O emissions were
≤2 kg N2O-N ha−1 year−1, but underestimated fluxes when
measured emissions were >3 kg N2O-N ha−1 year−1 [95].
Further, DAYCENT significantly overestimated SOC losses
when tillage was used in these corn-based bioenergy systems
compared tomeasured results. Simulations of SOC changes in
the soil carbon model, CQESTR, agreed well with measured
SOC in both rainfed and irrigated stover removal studies in
eastern Nebraska [96].
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Agronomic management practices have been linked to
changes in soil health, with SOC used as a primary indicator
for various soil functions because of its links to numerous soil
biological, chemical, and physical properties [97]. For both
annual and perennial bioenergy production systems, biomass
removal rates as well as recommended companion manage-
ment practices intended to ameliorate biomass removal effects
(i.e., reduced or no-tillage, change in nutrient inputs, cover
crop use) are of specific concern for long-term soil health [98].

Use of perennial grasses on landscapes, especially where
soils are marginally productive and/or erosion prone, has been
shown to enhance SOC storage and nutrient retention (i.e., P),
improve soil bulk density, and reduce erosion risk [45, 89, 99].
Although direct plant measurements of switchgrass grown
under higher atmospheric CO2 concentrations indicate that
switchgrass may be limited in its potential to boost productiv-
ity as atmospheric CO2 concentrations increase [100], model
simulations of drought-tolerant cultivars predict switchgrass
could withdraw between 3 and 19 % less water than conven-
tional crops under future climate change scenarios [101].

Retention of crop residues in annual crop-based bioenergy
production systems can enhance SOC sequestration and re-
duce erosion risks. Therefore, using best management prac-
tices in annual systems are critical for ameliorating crop resi-
due removal impacts. At four Central US locations, stover
removal resulted in variable soil microbial community re-
sponses based on biochemical and genetic profiling tech-
niques. Stover removal decreased, increased, or did not affect
the ratio of soil fungi to bacteria, with variability in responses
attributed to differences in specific site characteristics (i.e.,
soils, management history) and climate [102]. Stover removal,
however, consistently degraded soil physical quality at all
sites, resulting in decreased soil stocks of particulate organic
matter, break down of larger soil aggregates, and increased
erosion potential [64, 80]. Companion management practices
that enhanced system biomass inputs (e.g., increased fer-
tilizer N rates, cover crop use) tended to ameliorate neg-
ative soil impacts of stover removal. Using a process-
based crop model developed by USDA-ARS in Temple,
TX called the Agricultural Land Management Alternatives
with Numerical Assessment Criteria (ALMANAC) [103],
model simulations with ALMANAC for biomass sorghum
predicted that even when SOC levels were maintained
under optimal residue and soil management practices
(i.e., 75 % removal under no-till), soil physical properties
(i.e., bulk density) still experienced degradation [104].

Agronomic use of co-products resulting from bioenergy
production processes also contributes to bioenergy production
system sustainability, climate change mitigation potential, and
soil health. Land application of biochar resulting from the
pyrolysis of annual and perennial biomass materials has re-
ceived increasing attention for its role in increasing system
SOC sequestration potential, improving soil fertility and crop

yields, and restoring function to degraded soils [105–107].
Land application of lignin co-products from ethanol
biorefineries resulted in second generation ethanol production
with the lowest GHG footprint and lowest capital cost com-
pared to selling lignin as a coal substitute or burning lignin to
produce electricity at the biorefinery [108].

Variability in field measurements and modeling results
highlight the importance of using both empirical and modeled
emissions rates and SOC changes to inform the selection of
sustainable management practices and in conducting LCAs.
System responses to management changes are highly specific
to regional climate and local variability in weather and site
characteristics like soil type and management history.
Coordinated multi-site studies such as USDA-ARS’s REAP
and greenhouse gas reduction through Agricultural Carbon
Enhancement network (GRACEnet) can provide both empir-
ical data as well as soil, weather, and management data re-
quired to execute site-specific, regional, and national model
simulations. Further, the GRACEnet/REAP data contribution,
discovery, and retrieval system provides the capability of run-
ning models internally based on associated soils, manage-
ment, and weather data [109]. The new USDA-ARS Long-
Term Agroecosystem Research sites will contribute informa-
tion as well. Using meta-analyses of multiple published
datasets as well as multi-model comparisons of simulation
outputs for the same management/climate change scenarios
have enhanced and continue to contribute to the capability
of RBRCs to predict management change impacts on
bioenergy system sustainability and climate changemitigation
potential.

Landscape Estimations and Feedstock Production
Modeling

Without adequate and reliable feedstock supplies, biofuel or
bio-based chemical facilities are not feasible. For sugars, de-
livery and use must be within 48 h or be condensed for stabi-
lization. Biomass can be stored for a prolonged period of time
in bales or in bulk until processed. However, transportation
costs to the conversion facility must be minimized. Thus, it is
necessary to have a landscape and climate that is sufficient to
grow high yielding feedstocks in close proximity to the con-
version facility. To minimize interference with current food,
feed, and fiber production, fuel crops should be produced on
less productive land. The challenge is to optimize biomass
while minimizing inputs. Growing feedstocks must empha-
size sustainability and consider soil, water, and air quantity
and quality as well as the effects on wildlife habitat.

Determining land availability is the key to establishing a
bioeconomy.Most US cropland in theMidwest is dedicated to
corn and soybeans. As previously mentioned, some corn sto-
ver can be recovered for use as a cellulosic feedstock. Uden
et al. [10] considered pivot corners (areas outside circular
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irrigation pivots) and dry land areas of less than 3.7 ha as
marginal crop land on which switchgrass could be grown,
with about 5 % of the cropland suitable for switchgrass
(Fig. 2). They estimated that if switchgrass yield was 5 to
11 Mg ha−1 and if between 30 and 50 % of corn stover was
removed, an additional 143 to 251 million L of cellulosic
ethanol could be produced and supplement the 208 million
L currently being produced from corn. In the southeastern
Coastal Plains, cultivated land is in small tracts characterized
by irregular shapes and numerous riparian areas. In the
Georgia Coastal Plain, Coffin et al. [6] modeled biofuel pro-
duction zones in marginal buffer areas associated with
cropland-riparian edges and grassed waterways. They estimat-
ed that 321,000 ha could potentially produce 2.2 to 9.4 Tg of
DM from perennial warm-season grasses, providing 778 to
3296 million L of ethanol per year. Such systems, placed
advantageously in the landscape, would have the added ben-
efit of removing excess N and other nutrients from agricultural
field runoff, which, for N, was estimated at 8100–51,000 Mg
per year.

Variability of climate, soils, and agroecosystems in the
USA will dictate the regionally appropriate bioenergy feed-
stock. For example, the Hawaii Clean Energy Initiative
(HCEI) sets a goal of 40 % of energy needs coming from local
renewable sources [110]. Besides sun, wind, and geothermal
sources, biomass from multiple species are being studied for
producing renewable energy. Sugarcane has been grown in
Hawaii as a sugar crop for over 100 years and is grown in a
2-year irrigation cycle with the bagasse considered a renew-
able feedstock. The ALMANAC model accurately deter-
mined biomass yields (R2 =0.77) from crop parameters with
different soil types and under different irrigation, N and P
applications [111]. The Soil and Water Assessment Tool
(SWAT) model was used in Hawaii to simulate water stress
and water use in sugarcane [112]. The SWAT model was then

used as a decision support tool to provide irrigation managers
with comprehensive water balance information.

ALMANAC was developed by determining the relation-
ship between biomass yields and different crop growth param-
eters. ALMANAC uses inputs on light interception responsi-
ble for biomass production, soil-water, carbon, and nitrogen
dynamics, and the effects of drought [113]. ALMANAC was
used to predict yield (3.8 to 20.9 Mg ha−1) and WUE of four
switchgrass ecotypes at five sites across the Midwest [113,
114]. Modeled WUE values (3 to 6 mg g−1) tended to match
published empirically measured values, with lowland types
having the greatest WUE [21, 113]. As changes in climate
increases the possibility of drought stress, ecotypes or culti-
vars with highWUE will be needed to maintain higher yields.

ALMANAC forecasted current and future productivity of
switchgrass across the Central and Eastern USA under pre-
dicted climate change scenarios. Switchgrass growing in cool-
er climates flowered earlier had lower WUE and were shorter
than fromwarmer sites [115]. Warmer areas of Florida and the
Texas and Louisiana Gulf Coasts have the highest long-term
productivity potential. Some of the lower productive agricul-
tural lands in the Northern Great Plains would be expected to
experience large increases in productivity with climate change
from the model [116]. Yield was predicted to increase in re-
gions with predicted higher temperatures and precipitation.
However, climate change in the interior Southeast was not
expected to have a large effect on yield.

Managing biomass production will vary greatly across lo-
cations and species. Mechanistic models have been used to
simulate the effects of irrigation, fertilization, and harvest fre-
quency on switchgrass yields, which can be used to assess
multiple management practices to make local planning recom-
mendations [113]. Determining WUE via ALMANAC was
achieved by calculating the effects of soil water availability
on plant growth from estimates of evaporation, soil water
evaporation, and plant water transpiration based on leaf area
index. Combining these measurements with variation in soils
can help predict which sites are best-suited to switchgrass
production rather than corn production [113].

Other Considerations

A major concern for the bioeconomy is competition for re-
sources (i.e., land and water) between bioenergy and tradition-
al crops. This competition is intensified with the additional
challenge of feeding an expected world population of 9 billion
by the middle of this century [117, 118]. One way to alleviate
traditional versus bioenergy crop competition is to grow
bioenergy crops during fallow periods that do not conflict with
traditional crops. This strategy allows producers to maintain
current farming operationswhile potentially increasing overall
net returns with a supplementary bioenergy crop. In the
Southeast, this fallow period traditionally corresponds to

Fig. 2 Regions irrigated with center pivots provide opportunities for
supplying biomass feedstocks. Crop residues like corn stover and
annual cover crops can be harvested from the irrigated areas, whereas
perennial grasses can be harvested from the non-irrigated pivot corners
(photo by Rob Mitchell)
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winter when cover crops are used to protect soil from erosion
during high rainfall periods [119]. Biomass produced from a
winter cover crop could also be used as an herbaceous bio-
mass source [120].

Winter cereals like rye (Secale cereale L.) are used exten-
sively as cover crops in the Southeast. Ducamp et al. [120]
reported rye planted as a cover crop and harvested for
bioenergy was more beneficial for cotton (Gossypium
hirsutum L.) production than not using a cover crop, but
retaining rye residue resulted in the highest seed cotton yields.
However, cover crop residue removal as a bioenergy source
could be detrimental for a subsequent crop like cotton com-
pared to no cover crop during hot, dry growing seasons [120].
An additional benefit of using a cover crop is that this type of
feedstock could enhance the year-round supply needs of a
bioenergy facility and reduce feedstock storage requirements.

Incorporating legumes into an annual biomass crop system
could reduce N fertilizer requirements, which will reduce
bioenergy production inputs [121]. Non-traditional legumes
like sunn hemp (Crotolaria juncea L.) could serve directly as
a bioenergy crop, particularly in the Southeast. In addition,
winter cover crops like vetch (Vicia L.) and lupin (Lupinus L.)
may fit well into a biomass sorghum-cotton rotation [122]. As
previously mentioned, corn stover is a good bioenergy feed-
stock that is readily available [123]. In the Southeast, sunn
hemp could be planted during the fallow period after corn har-
vest allowing it to produce significant biomass before frost
[124]. Cantrell et al. [125] reported a 204 GJ ha−1 energy yield
for sunn hemp biomass collected 3 months after planting.
Regression modeling estimated 112 to 151 Tg year−1 of rye
biomass could be harvested for bioenergy purposes in continu-
ous corn and corn-soybean rotations in the US Corn Belt [126].
Further, incorporation of winter oilseeds into corn-soybean
cropping systems may provide additional farm revenue while
providing numerous ecosystem services (e.g., increased biodi-
versity, soil protection, food source for pollinators) [127].

Another alternative is to rotate traditional and bioenergy an-
nual crops to meet bioenergy feedstock demand [36]. Using
annuals in bioenergy feedstock production systems provides
farmers with flexibility and does not dedicate fields for
5 to 10 years like perennial production systems.
Additionally, annuals such as sorghums, teff, wheat, oat, and
triticale offer double-cropping or relay-cropping opportunities
with existing crop systems to limit disruption of the current
farming operation.

Challenges and Opportunities

Providing a reliable source of high quality feedstocks to the
biorefinery in an economically and environmentally sustainable
manner that is profitable for the farmer will be the primary
challenge for herbaceous feedstocks. Biomass-based systems
will require enormous quantities of material. For example, a

300 million L per year plant will require 907,000 DM Mg of
feedstock year−1 or 2490 DMMg of feedstock day−1, requiring
222 ha of feedstock yielding 11.2 DMMg ha−1 [1]. Significant
breeding progress has been made on many of the dedicated
energy crops, with yields exceeding 20 DM Mg ha−1 in much
of the region. However, capturing the biomass from these high-
yielding fields with conventional haying equipment has proven
problematic, with 10–40 % of the total standing crop being lost
during harvest and transport. Improvements in equipment, har-
vesting, and transportation strategies for post frost harvests are
needed to reduce these losses.

In order to limit competition with the production of food,
feed, and fiber, biofuels will likely be grown on land that is
marginally productive for crops, which typically are smaller in
size, less productive, have poorer soil, and have high erosion
potential [128]. Agricultural policies must not penalize
farmers for growing bioenergy feedstocks. Research has dem-
onstrated that properly managed switchgrass has a positive
carbon balance and a positive energy balance compared to
gasoline when grown on land that is marginally productive
for annual row crops [16]. Properly managed corn stover can
meet these same criteria. More research on the invasive po-
tential for candidate feedstocks throughout the supply chain is
needed [129]. But, after significant evaluation and due dili-
gence, fear of the “what if” cannot prevent the deployment of
the biofuel industry or of candidate biofuel feedstocks [2]. For
example, there was no evidence of switchgrass grown on mar-
ginally productive cropland in eastern Nebraska invading ad-
jacent fields or borders after 10 years of management for
bioenergy [48].

Energy crop production provides unique opportunities for
cultural change, operational diversification, and increasing
biodiversity on the agricultural landscape [2]. Current research
funding from the USDA-NIFA-CAP grants is rapidly
expanding our knowledge of dedicated energy crop produc-
tion and conversion and has fostered collaborations to accel-
erate the development of the bioeconomy [9]. Diverse
bioenergy cropping systems can provide risk mitigation and
economic opportunities for the farmer and environmental ben-
efits such as stabilizing soils and reducing soil erosion, im-
proving water quality, increasing and improving wildlife hab-
itat, and storing C to mitigate greenhouse gas emissions. For
energy crops to be adopted by farmers, they must be profit-
able, fit into existing farming operations, be easy to store, and
deliver to the biorefinery, and extension and crop consulting
efforts must be provided.
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